Complexity of real root isolation using continued fractions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the complexity of real root isolation using continued fractions

We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method’s good performance in practice. We derive an expected complexity bound of ÕB(d + d4τ2), where d is the polynomial degree and τ bounds the coefficient bit size, usin...

متن کامل

Improved complexity bounds for real root isolation using Continued Fractions

We consider the problem of isolating the real roots of a square-free polynomial with integer coefficients using (variants of) the continued fraction algorithm (CF). We introduce a novel way to compute a lower bound on the positive real roots of univariate polynomials. This allows us to derive a worst case bound of ÕB(d + dτ + dτ) for isolating the real roots of a polynomial with integer coeffic...

متن کامل

Univariate Polynomial Real Root Isolation: Continued Fractions Revisited

We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method’s good performance in practice. We improve the previously known bound by a factor of dτ , where d is the polynomial degree and τ bounds the coefficient bitsize, thu...

متن کامل

On the Complexity of Real Root Isolation

We introduce a new method to isolate the real roots of a square-free polynomial F = ∑i=0 Aix with real coefficients Ai, where |An| ≥ 1 and |Ai| ≤ 2τ for all i. It is assumed that each coefficient of F can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy...

متن کامل

Revisited Using Continued Fractions

If the equation of the title has an integer solution with k ≥ 2, then m > 109.3·10 6 . This was the current best result and proved using a method due to L. Moser (1953). This approach cannot be improved to reach the benchmark m > 1010 7 . Here we achieve m > 1010 9 by showing that 2k/(2m−3) is a convergent of log 2 and making an extensive continued fraction digits calculation of (log 2)/N , wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2008

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2008.09.017